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Abstract

Purpose—Previous research has suggested gastroschisis, a congenital malformation, may be 

linked to environmental or infectious factors and cases can occur in clusters. The objective of this 

study was to identify geographic areas of elevated gastroschisis risk.

Methods—Cases of gastroschisis were identified from birth defect registries in Massachusetts 

and Texas. Random samples of live births were selected as controls. Generalized additive models 

were used to create a continuous map surface of odds ratios (OR) by smoothing over latitude and 

longitude. Maternal age, race/ethnicity, education, cigarette smoking, and insurance status (MA 

only) were assessed for confounding. We used permutation tests to identify statistically significant 

areas of increased risk.

Results—An area of increased risk was identified in north-central Massachusetts, but was not 

significant after adjustment (p-value=0.07; OR=2.0). In Texas, two statistically significant areas of 

increased risk were identified after adjustment (p-value=0.02; OR=1.3 and 1.2). Texas had 

sufficient data to assess the combination of space and time, which identified an increased risk in 

2003 and 2004.

Conclusion—This study suggests there were areas of elevated gastroschisis risk in 

Massachusetts and Texas that cannot be explained by the risk factors we assessed. Additional 

exploration of underlying artifactual, environmental, infectious, or behavioral factors may further 

our understanding of gastroschisis.
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Introduction

Gastroschisis is a rare congenital malformation where loops of bowel are protruding from 

the abdominal wall of an infant [1]. The recurrence risk of gastroschisis in siblings is small 

and concordance is low in monozygotic twins suggesting that genetics does not play a large 

role in the etiology of gastroschisis [2-4]. In addition, gastroschisis often occurs in the 

absence of other congenital anomalies and is rarely associated with chromosomal anomalies 

or syndromes further suggesting that environmental or infectious factors are involved [3, 5].

From 1964 to 2004 the prevalence of gastroschisis has increased 10 to 20-fold worldwide, 

leading some to call it a pandemic [6]. The prevalence of gastroschisis in the US is estimated 

to be 1 per 2,700 [7]; however, when stratified by maternal age the prevalence changes to 1 

per 800 in mothers <20 years old, 1 per 1900 in 20-24 year olds, 1 per 4900 in 25-29 year 

olds, and 1 per 17,600 in ≥30 year olds [8, 9]. No other risk factor has consistently been 

associated with gastroschisis.

One possible clue in understanding the etiology of gastroschisis is that it has been observed 

to occur in clusters [10-15]. Only a few studies to date have used systematic methods for 

assessing clustering of gastroschisis. One case-control study of gastroschisis used interview 

data [16]. They employed an arbitrary definition of a spatio-temporal cluster (defined as at 

least 3 cases within a 30-day period within one study site) and found that 35% of cases 

occurred in a ‘cluster’. Comparing cases that occurred in a cluster to those that did not, the 

authors found that clustered cases had higher odds of having a fever versus non-clustered 

cases. Because this study was not population based, systematic identification of clusters was 

not possible. Another study using data from the Metropolitan Atlanta Congenital Defects 

Program found a temporal cluster in 1988, with 3 times more cases than expected [14]. In 

response, a case-control study was conducted to further assess if cocaine use could account 

for the cluster. However, the study was limited by small numbers (15 cases) and did not 

report other risk factors besides cocaine use. The third study to examine clustering of 

gastroschisis used the North Carolina Birth Defect Registry and a sample of controls from 

birth certificate data [15]. This study used the most rigorous method of any study to date 

utilizing cases from the entire state and individual level data to control for confounding. 

They identified one spatial cluster in the rural southern Piedmont area. No study to date has 

formally assessed the interaction of space and time for clustering of gastroschisis using 

population-based data.

The objective of the present study was to use rigorous systematic methods to identify areas 

of elevated gastroschisis risk in space and time using population-based data from 

Massachusetts and Texas. The different population characteristics of the two states allow us 

to account for social and ethnic variables that may explain underlying patterns of risk. Any 

remaining spatial variation may suggest hypotheses for further investigation.
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Materials and Methods

Data were obtained from the Texas Birth Defects Registry and the Massachusetts Birth 

Defects Monitoring Program. Both data sources are population-based registries that actively 

ascertain cases with congenital malformations diagnosed within the first year of life. Cases 

included live births, stillbirths, and elective terminations (TX only). The study has been 

approved by the Institutional Review Board approval at Boston University, the 

Massachusetts Department of Public Health, and the Texas Department of State Health 

Services.

We conducted a case-control study, where cases with gastroschisis were identified in the 

birth defect registries using the modified British Pediatric Association code (756.710). In 

each state, a random sample of live births was selected from the state Birth Registry to serve 

as controls and represent the underlying population. The maternal residence at birth, as 

reported on the birth certificate, was used in the spatial analysis and served as a proxy for 

the address during early pregnancy when gastroschisis develops. Addresses in 

Massachusetts and Texas were geocoded by the Massachusetts Department of Public Health 

and the Texas Department of State Health Services, respectively. An attempt was made to 

geocode mothers with missing geocodes using ArcGIS[17] and Google maps. Mothers with 

missing geocodes or addresses that could not be geocoded (e.g. post office boxes) were 

excluded from the main analysis.

Spatial analysis

Generalized additive models (GAMs) were used to examine spatial and spatio-temporal 

clustering [18, 19]. The model used was: Logit [p(x)] = α + γ’z + S(x1, x2). The left hand 

side of the equation is the log of the disease odds, α is the intercept, and z is a vector of the 

covariates. The last term is the non-parametric smoothing function, without which the model 

simplifies to an ordinary logistic regression model. A bivariate smooth function (S(x1, x2)) 

was used to model location for the spatial analysis where x1 and x2 were the longitude and 

latitude. A loess smoother was used for the smoothing term because it adapts to changes in 

neighborhood size and weights points nearby more heavily than those further away. The 

span size determined the amount of data the smoother would use in the smoothing process. 

For example, a span size of 0.20 indicated 20% of the data closest to the point of interest 

would be used in the smoothing process. In a large metropolitan area, 20% of the data may 

correspond to a smaller geographic area; while in a rural area, where there is less data, 20% 

of the data may encompass a larger spatial area. The use of a larger span size results in a 

smoother surface with less variability but increased bias; the use of a small span size leads to 

increased variability and the detection of random patterns. Consequently, there is a trade-off 

between bias and variability in choosing a span size. To determine the optimal span size for 

the model, a series of span sizes were tested and the value that minimized the Akaike’s 

Information Criterion was chosen as the final span size [19].

For the spatial analysis, a rectangular grid was overlaid on the study area. Using the spatial 

model, the log odds were predicted at each grid point. Adjusted log odds were predicted at 

each grid point by holding the covariate values constant which resulted in predicting for 

specific values of the covariate (e.g., predicting for non-Hispanic White women). To convert 
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the log odds to odds ratios (ORs), the log odds at each point in the grid was divided by the 

log odds of the GAM without the smoothing term (the aspatial model). Omitting the 

smoothing term from the model results in calculating the odds of disease over the entire 

study area; therefore when converting the grid points from log odds to ORs, the reference 

group becomes the entire study area. All modeling was performed with the MapGAM 

package in R [20] and the results of the analysis were exported into ArcGIS, [17] where the 

grids were visualized over the study area.

In Texas, there was a sufficient number of cases within each year to assess the combination 

of space and time. To examine space and time, the data were partitioned into one year time 

spans, with a 6 month overlap between each time span, and a series of maps were created for 

each time span. The maps were assembled into movie format, resulting in the smoothing of 

both space and calendar time [21].

A global test was conducted to assess if location was significant in the study area. The null 

hypothesis that case status was not dependent on location was tested by comparing the 

deviance from the model with the smoothing term to the model without the smoothing term. 

The smoothing term is a measure of location and therefore the comparison with and without 

serves to test the significance of location. Once the deviance statistic was calculated, it was 

compared to a distribution of deviance statistics generated under the null hypothesis. To 

obtain this distribution, the data were permutated by randomly re-assigning a new residential 

location to each participant, under the null hypothesis that case status was not associated 

with location. The models were re-run with the permuted data and the deviance statistic was 

calculated. These steps were repeated 999 times in order to create a distribution of the 

statistic under the null hypothesis [19]. The deviance statistic from the main analysis was 

compared to this distribution and a p-value less than 0.05 was determined to be a statistically 

significant association.

If the global test indicated that location was important, the next step was to determine where 

areas of significantly increased or decreased odds were located. The local test examined the 

pointwise departure from the null hypothesis that the map had no areas of considerably high 

or low log odds. We used the models fitted to the permuted datasets to generate a 

distribution of predicted log odds at every grid point. The results from the main analysis 

were compared to the distribution to assess how likely it was that the log odds from our 

results were due to chance. All log odds that fell into the upper or lower 2.5% of the 

distribution were considered statistically significant. Areas that were identified as 

statistically significant by the local test were denoted with black contour bands on the maps.

The following covariates obtained from the birth certificates were assessed for confounding: 

maternal age (modeled as a continuous and categorical variable), race/ethnicity, years of 

education, and cigarette smoking, and insurance status (MA only). Spatial confounding is 

present if the covariate is a risk factor and varies spatially. To identify the final list of risk 

factors to adjust for in the models, risk factors were added one at a time to the model and 

adjusted maps were generated. If there were changes in the span size or spatial predictions, 

or if there was spatial variability of the risk factor, the variable was considered for inclusion 

in the final model.
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Due to the strong association between gastroschisis and young maternal age, we stratified 

the data by maternal age to examine effect measure modification; the results are presented in 

the supplemental materials (Figures S1 and S2). In addition, we conducted a sensitivity 

analysis to assess if the results changed when mothers with missing geocodes were included 

in the analysis. The missing geocodes were imputed by creating a grid of points within the 

boundaries of the city and/or zip code provided by the mother on the birth certificates. One 

grid point within the city and/or zip code was randomly chosen and served as the imputed 

address. The analysis was repeated three times and each time a random location was selected 

for each mother. Maps were generated for all 3 iterations of the sensitivity analysis and 

compared to the main analysis.

Results

Massachusetts

After restricting to only in-state resident births, 156 cases of gastroschisis were identified 

and 9,000 controls were randomly selected from birth certificates, representing births from 

2000 through 2007. One case and 81 controls were missing geocoded addresses and 

excluded from the main analysis, resulting in a total of 155 cases and 8,919 controls. 

Compared to control mothers, case mothers were more likely to be younger, smoke, not 

have private insurance, of other race ethnicities, and have less years of education (Table 1).

The spatial distribution of case and control mothers reflects a denser population in eastern 

Massachusetts and areas of sparse population in western Massachusetts (Figure 1). The 

crude map of Massachusetts showed elevated risks in the northern area of the state, with the 

highest ORs at 2.4 (global p-value <0.01; span size=0.65; Table 2). The local test identified 

areas of statistically significant increased and decreased risks that are denoted by the black 

bands in Figure 2A. Only maternal age appeared to alter the appearance of the maps and 

change the span sizes, but maternal race/ethnicity was also included as it was found to vary 

spatially. For race/ethnicity we chose only to predict for non-Hispanic white women; 

predicting for other race/ethnicities would not change the risk pattern observed on the map 

because changing the value of one variable in the prediction model would change all the 

values in the prediction grid by the same amount. Given the strong association between 

gastroschisis and maternal age we opted to present predicted maps for both younger and 

older mothers. Once the map was adjusted for maternal age and race/ethnicity, the ORs in 

the north-central area were attenuated and predicted ORs were 2.0 for non-Hispanic white 

women ≥25 years of age (Figure 2B) and 1.9 for non-Hispanic white women <25 years of 

age (Figure 2C). After adjustment for age and race/ethnicity the risks for the eastern portion 

of Cape Cod were elevated for women ≥25 years of age (OR=2.4) (Figure 2B) and for 

women <25 years of age (OR=2.3) (Figure 2C); though after adjustment location overall 

was no longer statistically significant (predicting for older women: global p-value=0.07, 

span size=0.85; predicting for younger women: global p-value=0.07, span size=0.85; Table 

2).Results were similar when maternal age was modeled continuously with a loess smoother 

(Supplemental Material, Figure S3).

The majority of mothers (70%) with missing geocodes lived in rural towns (population 

<50,000) and were evenly distributed throughout the state (see Supplemental Material, 
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Figure S5). The addresses of all 82 mothers with missing geocodes were imputed and 

included in the sensitivity analysis. When the imputed geocodes were included, the ORs 

adjusted for non-Hispanic White women ≥25 years of age were slightly higher for all three 

iterations of the sensitivity analysis; the maximum ORs ranged from 2.7 – 2.8, depending on 

the iteration, and were located on the eastern portion of Cape Cod. ORs were also elevated 

in the north-central area and were around 1.9 in all three iterations (see Supplemental 

Material, Figure S6). In addition, the global test was borderline significant with p-values of 

0.04 for all three iterations and the local test identified Cape Cod and the north-central area 

as having elevated ORs that were significant.

Texas

In Texas a total of 1,756 cases were identified and 10,000 controls were randomly sampled 

from the birth certificates. Of those, 1,687 cases and 9,706 controls had valid geocoded 

addresses and were included in the main analysis. Compared to control mothers, case 

mothers were more likely to be younger, of Hispanic ethnicity, and have less years of 

education (Table 3).

Figure 3 shows the spatial distribution of case and control mothers in Texas. The crude map 

revealed elevated ORs (maximum OR: 1.7) in the center of the state and along the coast near 

Corpus Christi (global p-value <0.01; span-size=0.30) (Figure 4A). These regions were 

found to be statistically significant as depicted by the significance bands. After adjustment, 

the maximum predicted OR was 1.3 for both non-Hispanic white women ≥25 years of age 

(Figure 4B) and non-Hispanic white women <25 years of age (Figure 4C). Even with the 

attenuation in risk, the p-value remained statistically significant and the significance bands 

identified the north-central and Corpus Christi regions as areas of statistically significant 

increased risk (predicting for older women: global p-value=0.02, span size=0.45; predicting 

for younger women: global p-value=0.02, span size=0.45; Table 2). Results were similar 

when maternal age was modeled continuously with a loess smoother (Supplemental 

Material, Figure S4).

Only 41% of mothers with missing geocodes lived in a county that had a population less 

than 50,000, with many of the mothers being located in the eastern half of the state (see 

Supplemental Material, Figure S7). Of the 363 mothers with missing geocodes, we were 

able to impute addresses for 359 mothers to include in the sensitivity analysis. The results 

were similar to the main analysis, with all three iterations identifying a location with 

adjusted OR of 1.3. The global tests indicated location was significant with p-values at 0.01 

or less for all three iterations (see Supplemental Material, Figure S8). Additionally, the same 

regions as in the main analysis were identified as statistically significant.

Given the large number of cases in Texas we were able to assess the combination of space 

and time. First, the data were partitioned into calendar years (January 1st – December 31st) 

and maps were generated for each year (see Supplemental Material, Table S1 for summary 

of model specifications). The data were also partitioned into overlapping years (July 1st – 

June 30th) and maps were created for each year of data. To create a movie representing the 

combination of space and time, the maps for calendar year were placed in succession and the 

July through June maps were placed between the calendar year maps to smooth over time. 
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The addition of maternal race/ethnicity did not change the appearance of the maps (see 

Supplemental Material, Figures S9 and S10 for maps with race/ethnicity included) and 

therefore we elected to omit race/ethnicity from the models to preserve degrees of freedom. 

A loess smoother was used for maternal age with a span size 0.45 for all years. Figure 5 

shows the calendar year maps for the early years of the study when areas with elevated ORs 

were identified; the entire movie can be seen in the supplemental materials. In 2001 (p-

value=0.09), 2003 (p-value=0.03), and 2004 (p-value <0.01) there appeared to be elevated 

risks in the western, central, and northern parts of Texas, though only 2003 and 2004 had a 

statistically significant p-value with a maximum OR of 2.1 and 2.6, respectively.

Discussion

These analyses suggested geographic areas of elevated risks for gastroschisis in both 

Massachusetts and Texas. In Massachusetts ORs were elevated when we predicted for older 

mothers (maximum OR: 2.4), as well as when we stratified (maximum OR: 2.5), with the 

latter analysis being statistically significant. In Texas, ORs were elevated and significant 

when we stratified and examined patterns of risk among older mothers (maximum OR: 2.3). 

Adjusting for covariates other than maternal age made little difference in the appearance of 

the maps which is consistent with other studies of gastroschisis where maternal age is often 

the strongest confounder. In the maps maternal race/ethnicity was also included as a 

covariate as it has been previously associated with gastroschisis and the spatial distributions 

of maternal race varied across our study areas [5, 7, 9].

Our finding in Texas confirms a previous study by Benjamin et al. that found the highest 

prevalence of gastroschisis to be in the county where Corpus Christi is located for earlier 

years (1999-2003) [22]. In the same study, the lowest prevalence of gastroschisis was found 

in the Houston/Galveston area, which is where we also identified a decreased risk of 

gastroschisis. The study by Benjamin et al. did not stratify by maternal age when 

investigating the prevalence of gastroschisis by counties.

The areas of increased risk we identified may be due to risk factors that tend to aggregate 

spatially, such as environmental or infectious exposures. For example, the Corpus Christi 

region has extensive petrochemical plants in the area and air pollution or environmental 

contamination from these plants could potentially be one such exposure. In Massachusetts a 

possible environmental exposure could be from the Massachusetts Military Reservation 

(MMR) located on Cape Cod. The MMR is located over the Cape Cod aquifer, which is the 

sole source of public drinking water on Cape Cod. The aquifer is an unconfined sand and 

gravel aquifer and because of its composition has been contaminated by past activities at the 

MMR [23-25].

Massachusetts and Texas are both populous states and have annual birth populations 

>75,000, but are distinctly different from each other. The racial and ethnic make-up of 

pregnant women varies in both states, with Texas having three times as many births to 

women of Hispanic ethnicity than Massachusetts [26]. Texas has a younger birth population 

and, in particular, a higher rate of teenage pregnancies (63.4 births per 1,000 15-19 year 

olds) than Massachusetts (20.1 per 1,000) [27]. In addition, there are socioeconomic 
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differences between the two populations. These differences in age, race/ethnicity, and 

socioeconomic status suggest that the distinct potential exposures that are associated with 

them will also differ greatly between the two states and therefore it is unlikely that one 

exposure alone may explain the elevated risk of gastroschisis observed in both states.

There were many advantages of using GAMs to examine spatial variability and identify 

areas of increased or decreased risk. The first was that it allowed us to use individual level 

data so that we did not have to aggregate cases to artificial boundaries (e.g., county or 

census tract). In addition, we were also able to simultaneously adjust for many individual-

level covariates. Given that both states included rural and urban areas, another advantage 

was the use of the smoothing term which adapted to changes in population density.

There are several limitations to our study. First, we cannot rule out the possibility that some 

of the spatial variation detected was due to residual spatial confounding. Spatial 

confounding occurs when there is an uneven spatial distribution of an uncontrolled risk 

factor. For example, if one neighborhood has a high density of cigarette smokers, then a 

cluster of lung cancer may be observed in that neighborhood; however, no cluster would 

have been detected if smoking had been controlled for. To reduce the possibility of 

confounding, we assessed a variety of individual level sociodemographic and behavioral 

factors as possible covariates in the models but were limited to the variables available from 

the birth certificate. In both Massachusetts and Texas we identified elevated ORs near the 

edge of our study area and cannot rule out the possibility of edge effects. Edge effects result 

in biased estimates near the edges of the study area due to a lack of data across the border of 

the study area; though a previous study using simulated data and GAMs found no edge 

effects when an edge was self-imposed on the study area [19].

There have been numerous critiques of using statistical tests to interpret data due to 

misinterpretation of significance tests, the arbitrariness of cut-offs, as well as the fact that 

many readers will equate statistical significance with a real or valid association [28-31]. 

While in this study we chose to use p-values, we did so to assist in determining when to 

interpret spatial variability and to prevent over interpretation of the data. In our study some 

areas had sparse data which could have led to spurious results. We therefore were using the 

non-significant p-value to suggest a more cautious interpretation of these results. It is also 

possible that some of the elevated areas may be evidence of a true increased risk and that the 

numbers were too small to reach statistical significance. Another approach we could have 

used was to calculate confidence intervals around the estimates, however they would have 

been difficult to display visually.

In our main analysis we excluded mothers with an address that could not be geocoded, 

which could have introduced a bias, especially if addresses were not missing at random. 

When we conducted a sensitivity analysis with imputed geocodes, the results did not change 

for the Texas data. In Massachusetts, the ORs were slightly larger when the missing 

geocodes were added, though the pattern of disease odds remained the same.

Lastly, our use of the birth address as a proxy for the address during pregnancy could have 

led to some misclassification. Previous studies have suggested that mobility during 
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pregnancy can range from 12-31% and young maternal age was associated with increased 

mobility [32-35]. However, when mothers moved during pregnancy, the majority of moves 

occurred intracounty (51%) rather than intercounty (23%).[33] A study in Texas found that 

while mobility during pregnancy was high (33%), particularly among younger mothers, the 

rates of moving were similar between cases and controls in each trimester of pregnancy; 

[35] these findings were confirmed in another study that compared mobility during 

pregnancy among mothers of infants with birth defects and those without [33]. These results 

suggest that while the use of delivery address as a proxy may be subject to some 

misclassification, especially for the younger mothers, it is likely to be non-differential. 

Given that residential address is considered our exposure in this analysis, we would expect 

that the result of this misclassification would lead to an underestimate of the true effect.

Conclusion

From a public health perspective, the rising prevalence of gastroschisis is of concern, as is 

the fact that it disproportionately affects infants of younger mothers. Given that little is 

known about the etiology of gastroschisis, more research is needed to explore novel 

exposures and help direct future research. The goal of the present study was to explore the 

possibility that gastroschisis occurs in clusters and add to the knowledgebase in order to 

generate possible hypotheses on the etiology of gastroschisis. Our results suggested that 

gastroschisis may in fact occur in clusters and that additional exploration of possible 

artifactual, environmental, infectious, or behavioral factors in these areas may further our 

understanding of the etiology of gastroschisis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Distribution of cases, Massachusetts Birth Defects Registry, and controls, Massachusetts 

Birth Registry, 2000—2007. Locations have been altered to preserve confidentiality.
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Figure 2. 
Map of crude odds ratios (A), predicted odds ratios for non-Hispanic White women ≥25 

years of age (B), predicted odds ratios for non-Hispanic White women <25 years of age (C), 

Massachusetts Birth Defects Registry, 2000—2007.
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Figure 3. 
Distribution of cases, Texas Birth Defects Registry, and controls, Texas Birth Registry, 1999

—2008. Locations have been altered to preserve confidentiality.
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Figure 4. 
Map of crude odds ratios (A), odds ratios adjusted for maternal age and race/ethnicity 

predicted for non-Hispanic White women ≥25 years of age (B), predicted odds ratios for 

non-Hispanic White women <25 years of age (C), Texas Birth Defects Registry, 1999—

2008.
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Figure 5. 
Map of age adjusted odds ratios for Texas by birth year, Texas Birth Defects Registry, 1999

—2004.
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Table 1

Sociodemographic and behavioral factors for cases and controls, Massachusetts Birth Defects Registry, 2000

—2007.

Cases Control

n (%) n (%)

Total 155 (100.0) 8919 (100.0)

Age

 < 20 53 (34.2) 566 (6.3)

 20-24 58 (37.4) 1364 (15.3)

 25-29 30 (19.4) 2069 (23.2)

 30-34 12 (7.7) 2858 (32.0)

 ≥35 2 (1.3) 2062 (23.1)

Race / ethnicity

 Non-Hispanic White 87 (56.1) 5957 (66.8)

 Other Races 68 (43.9) 2946 (33.0)

 Missing 0 (0.0) 16 (0.2)

Education

 <12 years 35 (22.6) 963 (10.8)

 12 years 91 (58.7) 3445 (38.6)

 > 12 years 27 (17.4) 4511 (50.6)

 Missing 2 (1.3) 0 (0.0)

Smoked during pregnancy

 Yes 20 (12.9) 737 (8.3)

 No 134 (86.5) 8166 (91.6)

 Missing 1 (0.6) 16 (0.2)

Insurance status

 Private insurance 47 (30.3) 6002 (67.3)

 Government insurance, self-pay, none 101 (65.2) 2662 (29.8)

 Missing 7 (4.5) 255 (2.9)
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Table 2

Summary of GAM specifications and results for Massachusetts and Texas.

Model OR
Range

Span
Size

Referent
odds

Global
p-value Figure

Massachusetts

 Crude model 0.6-2.4 0.65 0.02 <0.01 2A

 Predicting for non-Hispanic White
  women ≥25 years of age 0.8-2.4 0.85 0.01 0.07 2B

 Predicting for non-Hispanic White
  women <25 years of age 0.7-2.3 0.85 0.06 0.07 2C

Texas

 Crude model 0.7-1.7 0.30 0.17 <0.01 4A

 Predicting for non-Hispanic White
  women ≥25 years of age 0.7-1.3 0.45 0.05 0.02 4B

 Predicting for non-Hispanic White
  women <25 years of age 0.7-1.3 0.45 0.40 0.02 4C
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Table 3

Sociodemographic and behavioral factors for cases and controls, Texas Birth Defects Registry, 1999—2008.

Cases Control

N N

Total 1687 (100.0) 9706 (100.0)

Age

 <20 727 (43.1) 1368 (14.1)

 20-24 689 (40.8) 2695 (27.8)

 25-29 185 (11.0) 2560 (26.4)

 30-34 50 (3.0) 1981 (20.4)

 ≥35 29 (1.7) 1097 (11.3)

 Missing 7 (0.4) 5 (0.1)

Race / ethnicity

 Non-Hispanic White 606 (35.9) 3592 (37.0)

 Hispanic 940 (55.7) 4565 (47.0)

 Other Races 139 (8.2) 1534 (15.8)

 Missing 2 (0.1) 15 (0.2)

Education

 <12 years 731 (43.3) 2945 (30.3)

 12 years 581 (34.4) 2826 (29.1)

 ≥ 12 years 361 (21.4) 3839 (39.6)

 Missing 14 (0.8) 96 (1.0)

Smoked during pregnancy

 Yes 130 (7.7) 577 (5.9)

 No 1553 (92.1) 9076 (93.5)

 Missing 4 (0.2) 53 (0.5)
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